Find a Member
Finding the right member is just a click away.
Finding the right member is just a click away.
Activation of the PI3K pathway, through either oncogenic mutations or loss of tumor suppressors, is arguably the most prevalent transforming event in cancer. Much effort has focused on inhibitors of these pathways, but success to date has been tempered by on-target adverse effects driven by normal physiology that also relies on intact PI3K signaling. My research focuses on the regulatory and homeostatic mechanisms that control PI3K signaling at the level of its central lipid messengers. We aim to uncover how these lipid signals selectively couple to defined signaling outcomes; this basic knowledge will be transformative in predicting how oncogenic PI3K signaling can be selectively targeted while sparing normal physiology.
My lab employs innovative single-cell biochemistry approaches to study lipid signaling in living cells, employing a range of optical biosensors along with gene editing, optogenetic and chemigenetic tools. This approach uniquely empowers us to precisely edit and control cell signaling pathways to model physiology and disease alterations: we can dissect changes away from upstream and downstream pathway components, and notably mimic the effects of potential small-molecule modulators.